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Review: Lecture 1

m Introduction to Quantum Computing
® Superposition
® Quantum Computer vs. Classic Computer
m Complex Number
m The Algebra Property
® Ordered pair representation
® Modulus
® conjugate
m The Geometry Property

® Benefits of polar representation
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Lecture 2: Complex Vector
Space

Complex vector
space

e Complex vector space

e Transpose, conjugate,
adjoint

e Matrix multiplication

e Linear map

Basis and Dimension

e Linear combination

e Linear independent

¢ Basis and dimension
e Transition matrix

¢ Change of basis

Eigenvalue and Eigenvector

¢ Definition
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Inner Product and
Hilbert Space

e Inner product, norm
and distance

e Orthonormal basis

¢ Cauchy sequence,
complete and Hilbert
space

Hermitian and Unitary Matrices

e Hermitian matrix, properties and physical meaning
e Unitary matrix, properties and physical meaning
* Types of matrices
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1. Complex Vector Space

m Definitions: three operations
e Addition(+): VXV —V
e Negation(-): V—V

e Scalar multiplication(:): CXV —V

m Definition: zero

e Zero vector: 0cV
‘ If these operations and zero satisfy the properties: ‘

(RHEARFE 2020 REABREFIREHTRERMMEEIR)
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1. Complex Vector Space

m Definition: complex vector space V
Vo, w, €V and Ve, ¢, co€C,
e Commutativity: v rw=w+v
e Associativity: (v+tw)tz=v+ (wtex)
e Additive identity: v+0=v=0+v
e Additive inverse: v+ (-v) =0= (-v) +v

e Multiplication identity: 1-v=w
byt . c-(vtw)=c-vtc-w
e Distributive properties: (ci4¢) v=rc,-v+co v

(RRHSARFEE 2020 REARRZFIEEF@ERMAEEIR)
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1. Complex Vector Space

m Examples

Example 2.2.1 C”, the set of vectors of length » with complex entries, is a com-

plex vector space that serves as our primary example for the rest of the book. In

Section 2.1, we exhibited the operations and described the properties that are sati-
sfied. [

Example 2.2.4 C""", the set of all m-by-n matrices (two-dimensional arrays) with
complex entries, is a complex vector space. ]

2024/3/5 {Quantum Computing) 6



1. Complex Vector Space

m Three unary operations for A € C™*"

e [ranspose
A" € C"™ such that A" (4,k) =A(k,7)

e Conjugate
A € C™" guch that A (j,k) = A(4,k)

e Adjoint (dagger)
ATe C"*™ such that A'(4,k) = A(k,7)
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1. Complex Vector Space

m Properties of transpose
VeeC and VA,BeC™™*"

e Transpose is idempotent: (A")" =A

e Transpose respects addition: (A+B)" =A" +B"

e Transpose respects scalar multiplication:
(c-A)"=c-A"
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1. Complex Vector Space

m Properties of conjugate
VeeC and VA,BeC™™*"

e Conjugate is idempotent: A=A
e Conjugate respects addition: A+ B = A+B

e Conjugate respects scalar multiplication:
c-A=c- A
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1. Complex Vector Space

m Properties of adjoint
VeeC and VA,BeC™™*"

e Adjoint is idempotent: (A")"=A
e Adjoint respects addition: (A +B)"= A"+ Bf

e Adjoint respects scalar multiplication:
(c-A)f=¢-Al
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1. Complex Vector Space

m Selected properties for matrix multiplication
VAeC™", BeC"?, CeC"?, DeCr

e Matrix multiplication distributes over addition:
Ax(B+C)=(AxB)+ (AxC)

(B+C) *D=(B=*D) + (CxD)

e Matrix multiplication respects scalar multiplication:
c-(A*xB)=(c-A) xB=A~* (c-B)

(RSIBASF 2202048 R [E) F 45 IE I 51 X T 3EFE £ 4E S AN ILECAY S IR )
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1. Complex Vector Space

m Selected properties for matrix multiplication
VAeC™", BeC""”?

e Matrix multiplication relates to the transpose:
(AxB)"=B" x A’

e Matrix multiplication respects to the conjugate:
A~xB=A xB

e Matrix multiplication relates to the adjoint:
(A*B)"'=B"* A

(BRI 5ASR F 202048 R [E F 45 1E I 51 X T B R A4 8 AN ILECHY$81R)
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1.

Complex Vector Space

m The physical explanation of matrix * vector

e Matrix * vector --> Action * state

2024/3/5

Let A be any element in C"*". Then for any element B € C", we have that A x B
is in C". In other words, multiplication by A gives one a function from C" to C".
From Equations (2.39) and (2.41), we see that this function preserves addition and
scalar multiplication. We will write this map as A : C" — C".

Let us look ahead for a moment and see what relevance this abstract mathe-
matics has for quantum computing. Just as C" has a major role, the complex al-
gebra C"*" shall also be in our cast of characters. The elements of C" are the
wavs of describing the states of a quantum system. Some suitable elements of
C™m will correspond to the changes that occur to the states of a quantum sys-
tem. Given a state X € C" and a matrix A € C"*", we shall form another state of
the system A » X which is an element of C".* Formally, * in this case is a function
* o C"*" % C" — ", We say that the algebra of matrices “acts” on the vectors to
yield new vectors. We shall see this action again and again in the following chapters.
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1. Complex Vector Space

m Definition: linear map
e Alinear map from V to V' is a function

f:V—V" Vov,v,€V, and ceC

> f respects the addition:
flor+v5)= f(v)+ f(v2)

> f respects the scalar multiplication:

fle-v)=c- f(v)
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1. Complex Vector Space

m The physical explanation of linear map

Almost all the maps that we shall deal with in this text are linear maps. We have
already seen that when a matrix acts on a vector space, it is a linear map. We shall
call any linear map from a complex vector space to itself an operator. If F : C" —
C" 1s an operator on C" and A is an n-by-n matrix such that for all V we have

F(V) = A« V, then we say that F is represented by A.JSeveral different matrices

might represent the same operator

2024/3/5 {Quantum Computing)
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2. Basis and Dimension

m Definition: linear combination
'U:CO"U()—|_Cl.'01—|_‘“—|_cn_1"vn_1
Whel‘e 'U, vO) vl) Tty ’vn—lev

and CO, Cl, Tty Cn_le(c
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2. Basis and Dimension

m Definition: linearly independent

A set {vijv,e V}{=; is called linearly independent /f
O=cy-vot+cavy++c,-1 0,1

S=c="=¢ =0

e Corollary (¥1&, try to prove)

> Forany vi—0.1,...n_1, cannot be written as a

combination of the others {v;}/=§ ;-
» Forany 0+wv eV, unique coefficients {c:}iZo
(BLBIBASREE 2020 K FRIK[E]F1EHv, oA T AEEIR)

(RRGASREE 2020 REARRZFIREHF@MERMAEEIR)
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2. Basis and Dimension

m Definition: basis

A set {v;|v,;e V}Z; is called a basis of a vector
space V if

o VveV, v=cy-votc.v,+ +c,_1° 0,1

o {v,lv.eV}Z] is linearly independent

m Canonical/standard basis

e A basis that is easier to work with
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2. Basis and Dimension

m Examples

= R
0
ot 2.72)
1

m C"(and R"):

1 0 0 0
0 1 : 0
BE=| |, EB=| |,....E= vees Bpr=| | (273)
. . 1 .
| 0 | 0 | 0 |1
Every vector [cy, ¢1, ..., cn_]]T can be written as
n—1
Z(CJ‘ - Ej). (2.74)
i=0
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2. Basis and Dimension

m Examples

m C"*": The canonical basis for this vector space consists of matrices of the form

0 1 k n—1
0 [0 0 - 0 0
1 0 0 - o --- 0
Ej —j o0 --- 1 --. 0o | (275)
m-1100 --- 0 --- 0

where E;; has a 1inrow j, column k, and 0’s everywhere else. There is an E;
forj=0,1,..., m—1landk =0,1,...,n—1.Itisnot hard to see that for every
m-by-n matrix, A can be written as the sum:

m—1 n—1

A= "A[j k] Ejx. (2.76)

j=0 k=0

2024/3/5 {Quantum Computing)

21



2. Basis and Dimension

m Definition: dimension

2024/3/5

The dimension of a (complex) vector space is
the number of elements in a basis of the
vector space

B3, as a real vector space, is of dimension 3.

In general, R" has dimension n as a real vector space.

C" has dimension n as a complex vector space.

C" 1s of dimension 2n as a real vector space because every complex number is
described by two real numbers.

Poly,, is isomorphic to C"*1: it is not hard to see that the dimension of Poly,, 1s
alson + 1.

m C"*": the dimension is mn as a complex vector space.
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2. Basis and Dimension

m Definition: transition matrix

e A transition matrix from basis B to basis 9 is
a matrixM,. , such that their coefficients
satisfy

Vo = Mgy, o * Uy

e Note

In other words, Mp._p 1s a way of getting the coefficients with respect to one basis
from the coefficients with respect to another basis. For the above bases B and D, the
transition matrix is
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2. Basis and Dimension

m Utilities of transition matrix

e Operator re-representation in a new basis

Ay=My. p*xAy xMy. o

e State re-representation in a new basis

Vo = Mgy, o * Uy
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2. Basis and Dimension

m Example: Hadamard matrix

In R?, the transition matrix from the canonical basis

1 0
’ Hadamard

to this other basis

=
p—

Figure 2.6. The Hadamard matrix as

| 1
V2 V2 a transition between two bases.
1 1 X
V2 2
is the HSAEIEN:
1 [1 1 1 1 —I
H=— | V2 V2|, (2.95)
V2 |_1 1 1 1 J
V2 V2

2024/3/5 {Quantum Computing) 25



2. Basis and Dimension

m The motivation to change basis

In physics, we are often faced with a problem in which it is easier to calculate
something in a noncanonical basis. For example, consider a ball rolling down a ramp
as depicted in Figure 2.7.

The ball will not be moving in the direction of the canonical basis. Rather it
will be rolling downward in the direction of 4+45°, —45° basis. Suppose we wish to
calculate when this ball will reach the bottom of the ramp or what is the speed of
the ball. To do this, we change the problem from one in the canonical basis to one in
the other basis. In this other basis, the motion is easier to deal with. Once we have

completed the calculations, we change our results into the more understandable
canonical basis and produce the desired answer. We might envision this as the flow-

Figure 2.7. A ball rolling down a ramp and the two relevant

bases. Figure 2.8. Problem-solving flowchart.

Reverse

—— Transition — Calculations — 4
} } L Transition
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3. Inner Product and Hilbert Space

m Definition: inner product

e A binary function <-,-> : VXV —C that satisfies:
» Nondegenerate: {v,v) =0 and <{v,v) =0 & v=0
(U1 + 05,03 = {v1,v3) + {vs,v3)

> Respects additions: {
P <'017'Uz ‘|"03> — <’017’U2> + <’Ul,'¢73>

<C ' 'U1,'U2> =c X <’U17'U2>

> Respects multiplication: {
P P <'01>C . 'Uz> —c X <’017'U2>

» Skew symmetric: {v;,v) = {vy,vy)

(RHBASRFE 20194 H XK [EF 45 [E Itk 5T S iA)skewHYH B 351%)
(RHSASRFE 2018RIAFE R EIFIRE L TTAREE BN THRERENANEIR)

(RRHSARF & 2020 REFEABERFHREFERERMEEIR)
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3. Inner Product and Hilbert Space

m Definition: inner product

e A binary function <-,-> : VXV —C that satisfies:
» Nondegenerate: {v,v) =0 and <{v,v) =0 & v=0
(U1 + 05,03 = {v1,v3) + {vs,v3)

> Respects additions: {
P <'017'02 ‘|"03> — <’017’U2> + <’Ul,'¢73>

<C ' 'U1,'U2> =c X <'U17'U2>

<vlac . 'Uz> —cX <’017'U2>

. Conjugate linear in the first slot
> Skew sym metric: <'Ul,'02> — <’l]2”01> and linear in the second slot

(RHBASRFE 20194 H XK [EF 45 [E Itk 5T S iA)skewHYH B 351%)
(RHSASRFE 2018RIAFE R EIFIRE L TTAREE BN THRERENANEIR)

(RRHSARF & 2020 REFEABERIFREFERERMEEIR)
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Supplementary material

m Why must be skew symmetric rather than
symmetric?

EREIRE—AESSSNNEE AR, IR SR RTE YT TR
N EEMEELIEN  DRBFEEYA < 6,0 >= Y vw; M2

< U, W >= Z viw; | MTTERT TvEERTE |, AN TwEH R, | FRLUfEE— P EE

PLRTESFIFRAIR, Ei A RSB, (R A

ET I AERAESESNNRESSL? Bl 1=E0y VTR F S RE MAWIIRE (5B
) |, IFIERHEE—IER N FORER—E8, (RAEE "REREH" BaE

==

Al

ST TERARSEEEE AT LERLEN  MAESHLEXMNEN, EXEEY 538
HESNHES | ToAMBILEALEA,

2024/3/5

CAHA2AFNREEHMEZTRIPAEEGRHME? ) https://www.zhihu.com/question/60961989
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3. Inner Product and Hilbert Space

m Definition: inner product space

e A vector space with an inner product.

m Examples

m R”": The inner product is given as

(Vi, Vo) = V' = V. (2.106)

m C": The inner product is given as

Vi, Va) = V] % V5. (2.107)
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3. Inner Product and Hilbert Space

m Examples (cont.)

B R has an inner product given for matrices A, B € R"™*" as

(A, B) = Trace(A” « B), (2.108)
where the trace of a square matrix C is given as the sum of the diagonal elements.
That 1s,

n—1

Trace(C) =) " Cli. ]. (2.109)

i=0

m ™" has an inner product given for matrices A, B € C"*" as

(A, B) = Trace(A' x B). (2.110)
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3. Inner Product and Hilbert Space

m Definition: norm

e A unary function derived from inner product
-] : V=R

defined as |v| =+/{v,v)

e Properties

» Norm is nondegenerate: |[v| >0 if v#0 and [0] =0
» Norm satisfies the triangular inequality: |v+w| < |v| + |w|
> Norm respects scalar multiplication: [c-v| = |c| X |v]

(BSEARFE 2018 EiHKEIF R ELT=ANFANIFSHER)

(RRH5ARFE 2020 REABRFHREFERERMAEEIR)
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3. Inner Product and Hilbert Space

m Definition: distance

e A binary function defined based on norm
d(-,r) : VXV—=R

deﬁned as d('Ul,'Uz) — |'U1—'UQ| :\/<'01_'U2,'Ul_'02>

e Properties

» Distance is nondegenerate:
d(v,w) >0 if v#w and d(v,w) =0 v=w
» Distance satisfies the triangular inequality:
d(u,v) <d(u,w) +d(w,v)

> Distance is symmetric: d(u,v) =d(v,u)

(BRIBBASFES 20184% E i K[EEF 45 IE Itk Tinondegenerate AR, N e 2 HISE %)
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3. Inner Product and Hilbert Space

m Definition: orthonormal basis

e A basis B=/{ee, e, fOoran inner space V

satisfies
(1, if =
(e = {0, if § % j
e Property
» ForVwveV and any orthonormal basis {e;} /=0,
we have

n—1
v=> {e,v)e
i=0

2024/3/5 {Quantum Computing)
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NFERRL . IR
* 7\
e [areelus Cos® (3FA) Orthogonal (IE3Z)

(vy,v2)

\ 4
A 4

cost = h=— < {vy,v) =0

(vy,v2)

V1] - [0y 2

lv|=+/{v,v)

Distance (GEifr)

d(v1,v) = v, — vy

= /v, — v, v, — V)
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3. Inner Product and Hilbert Space

m Definition (just a sketch): Cauchy sequence

e Given a sequence of vectors v,,v1,v,,, if for

Ye>0, 3 N,eN such that for all m,n=N,, d(v,,v,) <e
m Definition (just a sketch): Complete

e For any Cauchy sequence wvo,v:,v,-,

there exist a vV, such that limd(v, —v) =0
m Definition: Hilbert space

e A complex inner space that is complete

2024/3/5 {Quantum Computing)



4. Eigen-values and -vectors

m Definition: eigenvalue and eigenvector

e For a matrix AcC**", if there is a number ceC
and a vector 0+ve C” such that
Av=c-v
then c is called an eigenvalue of A and

v is called an eigenvector of A associate with ¢ .

2024/3/5 {Quantum Computing)



5. Hermitian and Unitary Mat.

m Definition: Hermitian Example 2.6.1 The matrix
® Ac(Cnxn SUCh that Af=A 5 4+ 5i 6—16i_
4 —5i 13 7
_6+16z’ 7 2.1
1s hermitian.

m Definition: self-adjoint
e If A is a Hermitian matrix then the operator
that it represents is call self-adjoint (why called
self-adjoint? see proposition 2.6.4)
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5. Hermitian and Unitary Mat.

m Proposition 1
e If AcC™" is Hermitian, for all v,w € C* we have

Av,w) = {v,Aw)

e Proof
Av,w) = (Av) T xw % definition of inner product
=o'« Al xw % multiplication relates to the adjoint
=vi*xAxw % definition of Hermitian matrices
=v'x (Aw) % multiplication is associative

= {v,Aw) % definition of inner product
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5. Hermitian and Unitary Mat.

m Proposition 2

e For a Hermitian matrix, its all eigenvalues are real

m Proof
e Let A=C™" be a Hermitian matrix with an

eigenvalue ¢ C and an eigenvector ve C"

c{v,v) = <{v,cv) % inner product respects scalar multiplication
= {v,Av) % definition of eigenvalue and eigenvector
= (Av,v) % see last proposition
= {ev,v) % definition of eigenvalue and eigenvector

=c{v,v) % inner product respects scalar multiplication
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5. Hermitian and Unitary Mat.

m Proposition 3
e For a Hermitian matrix, distinct eigenvectors that

have distinct eigenvalues are orthogonal

m Proof
o Let AcC"" be a Hermitian matrix with two
distinct eigenvalues ¢, +c, € C and their related

eigenvectors v, v, € C”
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5. Hermitian and Unitary Mat.

m Proof (cont.)

o Let AcC"*" be a Hermitian matrix with two
distinct eigenvector v, # v, C" and their related

eigenvalues c;,c,€C

co {1,090 = {V1,c202) % inner product respects scalar multiplication
= {v,Avy) % definition of eigenvalue and eigenvector
= (Av,v,) % previous proposition
= {v,v5) % defintion of eignevalue and eigenvector
=¢1{v,v5) % inner product respects scalar multiplication

=, {v1,v5) % last proposition
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5. Hermitian and Unitary Mat.

m Proposition 4 (try to prove)

Proposition 2.6.4 (The Spectral Theorem for Finite-Dimensional Self-Adjoint
Operators.) Every self-adjoint operator A on a finite-dimensional complex vec-
tor space V can be represented by a diagonal matrix whose diagonal entries are the
eigenvalues of A, and whose eigenvectors form an orthonormal basis for V (we shall
call this basis an eigenbasis).

m Physical Meaning of Hermitian Matrix

Hermitian matrices and their eigenbases will play a major role in our story. We
shall see in Chapter 4 that associated with every physical observable of a quantum
system there is a corresponding hermitian matrix. Measurements of that observable
always lead to a state that is represented by one of the eigenvectors of the associated

hermitian matrix,
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5. Hermitian and Unitary Mat.

m Definition: Unitary

e Given a reversible matrix U e Cc*" such that
UxU'=U"«xU=1,

m Examples
Example 2.6.2 For any 6, the matrix Example 2.6.3 The matrix
_cosé‘ —sinf 0_ _% ﬁ %_
sinf cosf 0 — % ;j,:—‘s
0 0 |2 F wEd
1S a unitary matrix. i$ a unitary matrix.

(R BASR F E2021 R A AR [E] 45 th A Tk Bl $51%)
2024/3/5 {Quantum Computing} 44



5. Hermitian and Unitary Mat.

m Proposition 1

e [Unitary matrices preserve inner products]

If Ue C"*"is unitary, for all v,w < C"we have
Uv,Uw) = {v,w)

e Proof
Uv,Uw) = (Uv)"* (Uw) % definition for inner product
=v'U'x Uw % multiplication relates to adjoint
=o' *xI*w % definition for unitary matrices
= {v,w) % definition for inner product
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5. Hermitian and Unitary Mat.

m Proposition 2

e [Unitary matrices preserve norm]

If Ue C™"is unitary, for all ve C" we have

[Uv| = |v|
e Proof
Uv| =+/<{Uv,Uv) % definition for norm
= +/{v,v) % unitary matrices preserve inner product
= |v % definition for norm

(RRGBASRFE 2018RERIE[E])F 45 IE Lk TTUEFAI I2 IR S 1= mAVEEIR)
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5. Hermitian and Unitary Mat.

m Proposition 3

e [Unitary matrices preserve distance]

If Ue C**"is unitary, for all v,w < C" we have
d(Uv,Uw) =d(v,w)

e Proof
d(Uv,Uw) = |Uv —Uw| % definition of distance
= |U(v—w)| % multiplication distributes over addition
= |v—w| % unitary matrices preserve norm
=d(v,w) % definition of distance
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Supplementary material

m Proposition 4
e The modulus of eigenvalues of unitary matrix
s 1 (BEREFRVFHERIRT)
m Proposition 5
e Unitary matrix is the transition matrix from an
orthonormal basis to another orthonormal
basis (FREIEREBIMEIEARREINLERERE
FE%)

Source: https://www.youtube.com/watch?v=zQMUmaTxrbw
(B AT EREE W 20214k T 2 ERFIRIE L T E X EIEHIEEIEIR)
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5. Hermitian and Unitary Mat.

m Physical Meaning of Unitary Matrix

] Ul

| \/ My

A
X

Figure 2.14. The unit sphere
and the action of U on V.

What does unitary really mean? As we saw, it means that it preserves the geom-
etry. But it also means something else: If U is unitary and UV = V’, then we can
easily form U' and multiply both sides of the equation by U' to get UTUV = U'V’
or V = U'V’. In other words, because U is unitary, there is a related matrix that can
“undo” the action that U performs. U' takes the result of U’s action and gets back
the original vector. In the quantum world, all actions (that are not measurements)

[ 29 (13 < 2 3
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5. Hermitian and Unitary Mat.

m The roles of Hand U

&

/
d measure

| A Quantum
OU011010

W=au,+bup=xv,+yv,

Device y
/ : : a
-bits anzlog
doevice
U[to) Ufn) U[r]
¥) Ulzo]lyr) U[n JU[ro][vr) Ul ]l U ro]1¥)
U[to]t U[n]t U]
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5. Hermitian and Unitary Mat.

m Types of Matrices

Square matrices

Hermitian Invertible
Unitary

|

A

There are some others, e.g., Pauli matrices X, Y, Z

Figure 2.15. Types of matrices. 0 1 0 —i 1 0
X= , Y= ., Z= :
10 i 0 0 —1
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Conclusion

1. Complex Vector Space
» Transpose, conjugate and adjoint

2. Basis and Dimension
» Change of basis

3. Inner Product and Hilbert Space
» Inner product, norm and distance

4. Eigenvalues and Eigenvectors

5. Hermitian and Unitary Matrices
» Properties and physical meanings
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